Turma: 9º ano

Disciplina: Ciências

Aula (1) - Estados Físicos da Matéria

Os estados físicos da matéria são:

- 1) Sólido
- 2) Líquido
- 3) Gasoso
- 4) Plasma
- 5) Condensado de Bose-Einstein

1 - Sólido

- Partículas com baixa energia cinética
- Ligações fortes entre as partículas
- Retículo cristalino (grau máximo de organização)
- Forma e volume definidos
- Suportam compressão e tração

Fonte: https://www.tricurioso.com/2018/11/20/por-que-o-centro-dos-cubos-de-gelo-e-branco/

2 – Líquido

- Energia Cinética maior entre as partículas (comparando ao estado sólido)
- Ligações mais fracas, permitindo movimentação das partículas.
- Volume definido (fixo) e forma definida pelo recipiente
- Viscosidade (resistência em fluir, consistência do fluído)

Obs: Existem líquidos que fluem facilmente como a água e outros, como o mel, que são mais viscosos.

Fonte: https://mundoeducacao.bol.uol.com.br/biologia/agua-1.htm

3- Gases

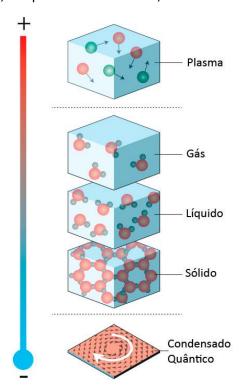
- Alta energia cinética, ligações fracas entre as partículas, permitindo movimentação
- Forma e volume definidos pelo recipiente (no qual está dentro)
- Pouco resistente a esforços mecânicos (comprimem e dilatam)

Fonte: http://3.bp.blogspot.com/-wi3YnJ7CUCk/UUOGjFkBSNI/AAAAAAAAAAFE/AacwU9C3l00/s1600/vapor.png

4 - Plasma

- Gases em altíssimas temperaturas
- Gases ionizados
- Elétrons se libertam
- Estado mais abundante do universo

Exemplos: fogo, núcleo das estrelas

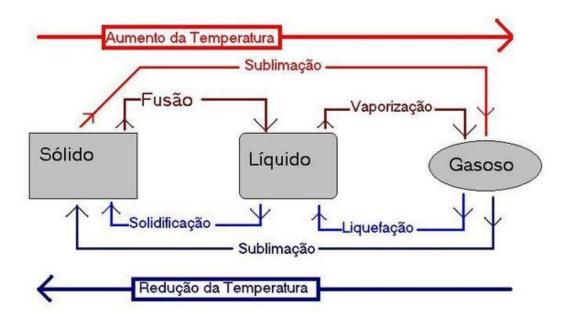


Fonte: https://www.karaokenet.com.br/qual-o-significado-de-sonhar-com-fogo/

5 – Condensado de Bose-Einstein

- São elementos químicos, em baixíssimas temperaturas (0º K)
- Partículas estão no mais baixo estado quântico (sem energia)
- Foi atingido este estado em 1995, usando o rubídio

Abaixo, esquema ilustrativo, das partículas da matéria, em cada um dos estados físicos:



Fonte: https://fisicanaveia.blogosfera.uol.com.br/2016/10/04/nobel-2016-fases-exoticas-da-materia/

Mudanças de estado físico da matéria.

As mudanças de estado físico ocorrem quando há absorção ou liberação de energia.

Esquema que representa as mudanças de estado físico:

Atividades

1. Complete a frase a seguir.

Comparando os estados físicos da matéria em relação à organização das suas partículas, podemos dizer

que, no estado, as p	partículas se encontram mais próximas umas das
outras. No estado, e	elas se encontram mais espalhadas e
desorganizadas, enquanto no estado _	sua distância é intermediária entre
aquelas observadas nos outros dois est	rados.

2. Elabore uma explicação baseada no modelo de partículas para o fato de o gelo derreter quando é mantido à temperatura ambiente.

 Dê exemplos de duas mudanças de estado físico que acontecem durante o ciclo da água, uma absorvendo e outra liberando calor. 	